Solare Unab­hängig­keits­erklärung

Zeitschrift Photovoltaik
erschienen in Photo­voltaik 10/2012, S.50-54

System­aus­legung: Photo­voltaik­anlagen mit Batterie­speicher machen Bewohner von Ein­familien­häusern unabhängiger von den Stromversorgern. Welche Autarkiegrade und Eigenverbrauchsanteile möglich sind, zeigt eine Untersuchung der HTW Berlin.

Für den Anlagenplaner und Installateur stellt sich die Frage, wie groß der Batteriespeicher in Kombination mit einer Photovoltaikanlage in Einfamilienhäusern sein sollte. Zum einen beeinflusst der Stromverbrauch die Systemauslegung und die Wahl eines geeigneten Batteriespeichers. Zum anderen muss der Wunsch des Hausbesitzers nach Unabhängigkeit bei der Auslegung berücksichtigt werden.

Die sinkende Einspeisevergütung und steigende Strombezugspreise machen den Einsatz von Batteriespeichern zunehmend interessant (siehe Bild 1). Besonders in Einfamilienhäusern können Batteriespeicher den Eigenverbrauch von Solarstrom erhöhen. Daher wurde als Beispiel für einen durchschnittlichen Einfamilienhaushalt mit einem Jahresstromverbrauch von 4.700 Kilowattstunden untersucht, welche Eigenverbrauchsanteile und Autarkiegrade sich mit Photovoltaik-Batteriesystemen erreichen lassen.

Vergleich der Kostenentwicklung der Haushaltsstrompreise mit der EEG-Vergütung für Photovoltaikanlagen

Bild 1: Vergleich der Kostenentwicklung der Haushaltsstrompreise mit der EEG-Vergütung für Photovoltaikanlagen mit einer installierten Leistung von weniger als zehn Kilowattpeak. Die Kurven zeigen, dass sich die Wirtschaftlichkeit im Vergleich zu einer Anlage, die nur einspeist, weiter verbessern wird.

Zur Bestimmung des Eigenverbrauchsanteils sind Last- und PV-Erzeugungsprofile in hoher zeitlicher Auflösung erforderlich, um kurzzeitige Spitzen und Schwankungen der Last und PV-Leistung abzubilden. Der elektrische Lastgang des Einfamilienhaushalts wurde daher über ein gesamtes Jahr in minütlicher Auflösung mit der Norm VDI 4655 erstellt (Referenzlastprofile von Ein- und Mehrfamilienhäusern für den Einsatz von KWK-Anlagen). Für die Norm wurden verschiedene Haushalte hinsichtlich ihres Lastprofils untersucht und daraus ein typisches Lastprofil erstellt. Das Profil wurde aber nicht über mehrere Haushalte gemittelt. Zeitlich hochaufgelöste Schwankungen und Spitzen des Stromverbrauchs sind somit enthalten, was wichtig für die Eigenverbrauchsberechnung ist. Die gemessenen Zeitreihen sind in Tage mit gleicher Charakteristik unterteilt. Unter Berücksichtigung meteorologischer Daten kann dadurch der Einfluss von Bewölkung und Jahreszeit sowie der Wochentage auf den elektrischen Verbrauch abgebildet werden.

Für die Erstellung der Lastprofile wurde auf meteorologische Daten für Berlin zurückgegriffen, die auch für die Photovoltaik-Erzeugungsprofile genutzt wurden. Um das Systemverhalten zu bestimmen, wurde ein Photovoltaiksystem mit Blei-Säure-Batteriespeicher in der Simulationsumgebung INSEL modelliert und in Minutenschritten simuliert (siehe Bild 2). Die Leistung des Solargenerators wird zuerst zur Deckung des Stromverbrauchs genutzt. Sobald die Erzeugung die Last übersteigt, wird die Batterie mit der Überschussleistung beladen. Erreicht die Batterie den maximalen Ladezustand, erfolgt die Einspeisung der Überschüsse in das Stromnetz. Kann die elektrische Last nicht durch die Photovoltaikleistung gedeckt werden, wird Strom aus der Batterie bezogen. Erst nachdem die Batterie bis zum minimalen Ladezustand entladen wurde, versorgt das Netz den Haushalt. Der Ladezustandsbereich der Batterie wurde auf minimal 40 Prozent und maximal 90 Prozent der Nennkapazität beschränkt, um die Tiefentladung der Batterie und die Beladung bei schlechten Ladewirkungsgraden zu vermeiden. Die nutzbare Kapazität entspricht somit der Hälfte der installierten Nennkapazität.

Simuliertes Systemverhalten eines Photovoltaik-Batteriesystems

Bild 2: Simuliertes Systemverhalten eines Photovoltaik-Batteriesystems mit fünf Kilowattstunden nutzbarer Speicherkapazität und einem Solargenerator mit fünf Kilowattpeak Leistung in einem Einfamilienhaushalt an einem Sonntag im Sommer.

Für die Ökonomie rein netzgekoppelter Photovoltaiksysteme waren bisher der absolute Jahresertrag und die damit verbundenen Einnahmen durch die Einspeisevergütung relevant. Für künftige Eigenverbrauchssysteme sind die Einsparungen durch die vermiedenen Netzbezugskosten zunehmend entscheidend. Daher gilt es, möglichst viel des erzeugten Solarstroms zeitgleich selbst zu nutzen, um dadurch hohe Eigenverbrauchsanteile zu erzielen.

Für den betrachteten Einfamilienhaushalt wurde durch Simulationsberechnungen bestimmt, welche Eigenverbrauchsanteile im Jahresmittel je nach installierter Photovoltaikleistung und Batteriekapazität möglich sind. Der Eigenverbrauchsanteil nimmt dabei mit steigender Größe des Photovoltaiksystems grundsätzlich ab (siehe Bild 3).

Eigenverbrauchsanteile eines Photovoltaik-Batteriesystems

Bild 3: Eigenverbrauchsanteil in Abhängigkeit von Batteriekapazität und Leistung des Solargenerators für einen Einfamilienhaushalt mit einem Jahresstromverbrauch von 4.700 Kilowattstunden.

Es zeigt sich: Ein durchschnittlicher Einfamilienhaushalt kann bei einem jährlichen Photovoltaikertrag von 958 Kilowattstunden pro Kilowattpeak seinen Stromverbrauch in der Jahresbilanz mit einem Fünf-Kilowatt-Photovoltaiksystem decken. Allerdings werden nur knapp 30 Prozent des erzeugten Solarstroms zeitgleich genutzt. Wird zusätzlich ein Batteriespeicher installiert, erhöht das den Eigenverbrauchsanteil je nach Größe der Batterie und des Photovoltaiksystems bei den zugrunde gelegten Daten um 15 bis 55 Prozentpunkte.

Die Rechnung ergibt, dass bei einer Fünf-Kilowatt-Anlage durch eine Batterie mit vier Kilowattstunden nutzbarer Speicherkapazität der Eigenverbrauchsanteil immerhin von knapp 30 auf 60 Prozent verdoppelt wird. Mit zunehmender Batteriekapazität steigt der Eigenverbrauch nur noch geringfügig. Dies ist darauf zurückzuführen, dass größere Batteriespeicher über Nacht nicht vollständig entladen werden, wodurch am Folgetag nicht die gesamte nutzbare Kapazität zur Speicherung des Solarstroms zur Verfügung steht. Andererseits ist ersichtlich, dass bei einem System mit nur zwei Kilowatt Leistung nahezu 100 Prozent Eigenverbrauch machbar sind.

Neben dem Eigenverbrauchsanteil ist der durch das Photovoltaik-Batteriesystem erzielte Autarkiegrad des Haushalts eine wichtige Bewertungsgröße und ein wesentliches Verkaufsargument von Eigenverbrauchssystemen. Der Autarkiegrad gibt an, welcher Anteil des Stromverbrauchs selbst erzeugt und wie viel Netzstrom dadurch eingespart werden kann. Während der Eigenverbrauchsanteil mit zunehmender Solarleistung tendenziell sinkt, steigt der Autarkiegrad an. Autarkie und Eigenverbrauch verhalten sich also gegenläufig zueinander (siehe Bild 4).

Autarkiegrade eines Photovoltaik-Batteriesystems

Bild 4: Autarkiegrad in Abhängigkeit von Batteriekapazität und Leistung des Solargenerators für einen Einfamilienhaushalt mit einem Jahresstromverbrauch von 4.700 Kilowattstunden.

Abstimmung von Batterie- und Solargeneratorleistung erforderlich: Ohne Batteriespeicher kann ein Fünf-Kilowattpeak-Photovoltaiksystem knapp 30 Prozent des Stromverbrauchs zeitgleich abdecken. Wird zusätzlich ein Batteriespeicher mit sechs Kilowattstunden nutzbarer Batteriekapazität installiert, kann der Autarkiegrad auf mehr als 60 Prozent gesteigert werden. Bei größeren Batteriespeichern steigt die Autarkie nur noch wenig an. Mit zehn Kilowattpeak Photovoltaikleistung und zehn Kilowattstunden nutzbarer Batteriekapazität ist es jedoch möglich, etwa 80 Prozent des Jahresstromverbrauchs mit selbst erzeugtem Solarstrom zu decken. Eine vollständige Autarkie ist theoretisch nur mit extrem großen Photovoltaiksystemen und Batteriekapazitäten möglich, da es im Winter in Deutschland nur sehr wenig Sonneneinstrahlung gibt und dieser überbrückt werden müsste. Das ist allerdings weder ökonomisch noch ökologisch sinnvoll.

Ein bestimmter Autarkiegrad kann durch verschiedene Auslegungen von Speicher und Solaranlage erreicht werden. An der zweidimensionalen Auftragung des Autarkiegrads in Abhängigkeit der Speichergröße und der Solaranlagengröße lässt sich ablesen (siehe Bild 5): Bei kleinen Photovoltaiksystemen kann der Autarkiegrad durch größere Batteriespeicher nur unwesentlich gesteigert werden. Im Gegensatz dazu hat bei kleinen Batteriekapazitäten eine Steigerung der Photovoltaikleistung nur geringen Einfluss auf die Autarkie. Daher müssen zum Erreichen hoher Autarkiegrade die Photovoltaikleistung und Batteriegröße im gleichen Maße gesteigert werden.

Autarkiegrade eines Photovoltaik-Batteriesystems

Bild 5: Ein bestimmter Autarkiegrad lässt sich durch verschiedene Auslegungen von Speicher und Solaranlage erreichen. Wenn der Kunde zum Beispiel 50 Prozent seines Stromes selbst erzeugen will, geht das bei dem gewählten Rechenbeispiel mit einer Photovoltaikanlage von sieben Kilowattpeak Leistung und einem Speicher von drei Kilowattstunden. Es geht aber auch mit einer Drei-Kilowattpeak-Anlage und einem Speicher von sieben Kilowattstunden Kapazität. Wie die anderen Beispiele ist das für einen Einfamilienhaushalt mit einem Jahresstromverbrauch von 4.700 Kilowattstunden gerechnet.

Systemauslegung wird komplexer: Während bei rein netzgekoppelten Photovoltaiksystemen die Auslegung vorwiegend durch die Dachfläche und den Geldbeutel bestimmt wurde, müssen künftig die Batteriekapazität und Photovoltaikleistung auf den Stromverbrauch abgestimmt werden. Neben dem Gesamtstromverbrauch hat auch die zeitliche Verteilung des Verbrauchs Einfluss auf den erreichbaren Eigenverbrauchsanteil und Autarkiegrad. Simulationsberechnungen mit anderen Lastprofilen ergaben jedoch, dass in der Regel die ermittelten Eigenverbrauchsanteile je nach Lastprofil bei gleichem Jahresstromverbrauch weniger als zehn Prozentpunkte voneinander abweichen. Durch eine Verlagerung des Verbrauchs in Zeiten mit hoher Photovoltaikerzeugung können Haushalte den Eigenverbrauch zusätzlich steigern.

Bei typischen Einfamilienhäusern lässt sich durch Photovoltaiksysteme mit einer Leistung von bis zu vier Kilowattpeak und einer passenden Batterie ein hoher Eigenverbrauchsanteil von über 80 Prozent erzielen. Dadurch sind Autarkiegrade um 50 Prozent machbar. Für eine höhere Autarkie nahe 80 Prozent sind größere Photovoltaiksysteme und Batterien erforderlich. Der Wunsch nach vollständiger Unabhängigkeit vom Netz ist in Deutschland in Einfamilienhäusern durch Photovoltaik-Batteriesysteme praktisch kaum erreichbar. Allerdings können sie den Großteil des Stromverbrauchs decken und somit einen entscheidenden Beitrag zu einer dezentralen und klimafreundlichen Stromversorgung leisten.

Johannes Weniger, Tjarko Tjaden,
Volker Quaschning

Auch einen Klick wert:

Web-Artikel von Volker Quaschning
Online-Artikel von Volker Quaschning

Eine Vielzahl an Artikeln behandelt aktuelle Themen der Energiepolitik, des Klimaschutzes und des Einsatzes erneuerbarer Energien.

Medienbeiträge von Volker Quaschning
Medienbeiträge von Volker Quaschning

In verschiedenen Print-, Radio- und TV-Interviews nimmt Volker Quaschning Stellung zu aktuellen Fragen über die Energiewende und eine klimaverträgliche Energieversorgung.

Podcast: Klimakleber - Ökoterroristen oder Weltretter?
Podcast: Klimakleber - Ökoterroristen oder Weltretter?

Die Letzte Generation hält unserer Gesellschaft einen Spiegel vor. Einige nennen sie Radikale, Terroristen oder Klima-RAF. Aber sind deren Anliegen nicht berechtigt? Der Podcast wägt ab.

Weltweite Kohlendioxidemissionen und -konzentration in der Atmosphäre
Weltweite Kohlendioxidemissionen und -konzentration in der Atmosphäre

Für den internationalen Klimaschutz gibt es erste Hoffnungsschimmer: Seit dem Jahr 2013 steigen die Kohlendioxidemissionen deutlich langsamer an als die Jahre zuvor. Allerdings wurden nach dem pandemiebedingten Rückgang im Jahr 2020 bereits im Jahr 2021 wieder Rekordwerte der Emissionen verzeichnet. Deutschland nimmt unter den Ländern mit den höchsten Kohlendioxidemissionen immer noch den unrühmlichen 6. Platz ein.

Installierte Leistung regenerativer Anlagen in Deutschland
Installierte Leistung regenerativer Anlagen in Deutschland

Erneuerbare Kraftwerke stellen inzwischen deutlich mehr als die Hälfte der installierten Kraftwerksleistung. Im Jahr 2019 ist der Windkraftzubau an Land deutlich eingebrochen, was den Ausbau insgesamt bremst. Dies wird durch den anziehenden Solarmarkt nur zum Teil kompensiert. 2021 konnten wieder mehr als 5 Gigawatt Photovoltaik installiert werden - ein Wert, der seit 2012 nicht mehr erreicht wurde.

Nach oben